Category Archives: Quantum physics

Unfortunately, this interesting story is coming to an end. In the previous post we already disscussed the first loophole-free Bell experiment, but if this experiment was conclusive the story is closed. Why are we still discussing it? . It happens sometimes […]

In previous posts, we have reviewed the different loopholes of Bell experiments. To make a long story short, entanglement experiments are based on measuring some magnitudes in two quantum systems, calculating a value based on the outcomes of these measurements, […]

Graphene is a two-dimensional allotrope of carbon made of hexagons. In February 2015, penta-graphene, only made of pentagons, was theoretically proposed as another two-dimensional allotrope of carbon . Apparently, it is dynamically, thermally, and mechanically stable, exhibiting a large band […]

In order to study new solid state magnetic properties appropiate new laboratory models are needed. In particular, there is a necessity for a substrate to investigate new forms of magnetic coupling with nanoscale ferromagnets and the exotic physics at the […]

An atom in an excited state gives off energy by emitting a photon, a quantum of electromagnetic radiation, according to Bohr’s second postulate. Although Bohr’s specific model of the atom has been vastly extended and incorporated into models based […]

The idea that the solution of Schrödinger’s equation is a wave that represents, not a physical wave, but the probability of finding the associated particle in some specific condition of motion has had great success. In fact, every experiment devised […]

In ordinary life it is assumed that any physical property of an object can be measured as accurately as necessary. To reach any desired degree of accuracy would require only a sufficiently precise instrument. Wave mechanics showed, however, that even […]

By the mid-1920s it was clear that “things” (electrons, atoms, molecules) long regarded as particles also show wave properties. This fact is the basis for the currently accepted theory of atomic structure. This theory, quantum mechanics, was introduced in 1925. […]

Silicon surfaces of crystalline solids are part of conventional electronics, but their exploitation in novel materials combining two-dimensional electron states (2DESs) and magnetism, which play an important role in the development of next-generation electronics, still remains elusive. The appearance of […]

In previous posts, we have discussed the two main loopholes of Bell experiments, the locality loophole, and the detection loophole. Both were closed a long time ago, but only recently they were closed in the same experiment. Let us summarize […]