Category archives: DIPC Advanced materials

Simple explanations for some complex patterns in twisted bilayer graphene

Simple explanations for some complex patterns in twisted bilayer graphene

DIPC Advanced materialsMaterials

By DIPC

Twisted bilayer and multilayer systems represent two-dimensional materials, where atom-thick layers of the same or different materials are superimposed and rotated by an arbitrary twist angle. Twisted bilayer graphene (TBG) represents arguably the most prominent physical system of this kind, the bilayers of transition metal dichalcogenides (TMD) the other. The effect of twisting two periodic […]

The stabilizing effect of a binder for transition metal oxides to sustain water oxidation in acidic environments

The stabilizing effect of a binder for transition metal oxides to sustain water oxidation in acidic environments

CatalysisChemistryDIPC Advanced materialsMaterials

By DIPC

Global energy demand is expected to rise around 30% by 2040 according to the International Energy Agency (IEA). Hydrogen (H2) produced by the electrolysis of water, using renewable electricity, the so-called green hydrogen, has emerged as a promising energy vector to respond to this increasing energy demand with the potential to decarbonize transportation, heating, and […]

Nanocolloids as hosts for light-propelled machineries

Nanocolloids as hosts for light-propelled machineries

DIPC Advanced materialsMaterials

By DIPC

nanocolloids The increasing attention to the design and experimental development of self-oscillating matter is primarily motivated by the potential use of such systems in emerging technologies (e.g., light engines) comprising compact components and minimum energy consumption. Self-oscillation is the generation of a periodic change in a system fuelled by a steady, non-periodic power source. The […]

The enigmatic charge order of kagome (Cs,Rb)V<sub>3</sub>Sb<sub>5</sub>

The enigmatic charge order of kagome (Cs,Rb)V3Sb5

DIPC Advanced materialsMaterials

By DIPC

The intricate relationship between lattice geometry and topological electronic behaviour determines the ground state properties of materials. The non-trivial band topology of the kagome lattice – it consists of the vertices and edges of the trihexagonal tiling – is being extensively explored as candidates to engineer Dirac fermions, topological flat bands, magnetic Weyl semimetals or […]

Highly efficient, durable, and economically competitive hydrogen evolution electrocatalyst

Highly efficient, durable, and economically competitive hydrogen evolution electrocatalyst

CatalysisChemistryDIPC Advanced materials

By DIPC

Global energy demand is expected to rise around 30% by 2040 according to the International Energy Agency (IEA). Hydrogen (H2) produced by the electrolysis of water, using renewable electricity, the so-called green hydrogen, has emerged as a promising energy vector to respond to this increasing energy demand with the potential to decarbonize transportation, heating, and […]

Milestone in the quest for THz magnonic devices working at room temperature

Milestone in the quest for THz magnonic devices working at room temperature

Condensed matterDIPC Advanced materialsMaterials

By DIPC

Magnons or spin waves are elementary quasiparticles, which represent a collective motion of magnetic moments in ordered systems. Spin waves can propagate in materials and therewith transport a spin current. This spin flow requires no electrical charge transport and therefore no electrical losses creating Joule heating. Spin waves enclose a wide frequency range, from gigahertz […]

Emergence of superconductivity in a metallic single-layer by minute electron doping

Emergence of superconductivity in a metallic single-layer by minute electron doping

DIPC Advanced materialsDIPC Interfaces

By DIPC

The isolation and manipulation of atomically-thin crystals have recently enabled the investigation of a wealth of exotic electronic phenomena. A remarkable example is the case of superconductivity in transition metal dichalcogenide monolayers, where the strong spin-orbit coupling, together with the lack of inversion symmetry, triggers the emergence of unconventional superconducting properties. In parallel to the […]

Engineering high Chern number materials

Engineering high Chern number materials

DIPC Advanced materialsMaterials

By DIPC

Some materials have special universal properties protected against perturbations. Such properties are theoretically described by topology, a branch of mathematics concerned with the properties of geometrical objects that are unchanged by continuous deformations. So-called topological insulators are electronic materials that have a bulk band gap like an ordinary insulator but have conducting states on their […]