Category Archives: Nanotechnology

Usually, optical activity is understood as the ability some substances have to change the handedness of polarized light when it goes through them. Molecules that show optical activity have no plane of symmetry. The commonest case of this is in […]

There are chemical compounds, called isomers, that have the same molecular formulae but different molecular structures or different arrangements of atoms in space. In constitutional isomerism the molecules have different molecular structures: i.e., they may be different types of compound, […]

Plasmonic nanostructures confine light to dimensions far smaller than the free-space wavelength, as they mix optical fields with electronic excitations. It was not until the 1990s, with the appearance of accurate and reliable nanofabrication techniques, that plasmonics blossomed. It […]

Symmetry is a unifying principle that governs all aspects of physics. The physical properties of crystalline solids are no different. But, as symmetry is progressively lowered through the 32 crystallographic point groups, novel transport effects emerge. Crystal symmetry dictates also […]

Nonlinear processes are attractive in microscopy and spectroscopy since they can be excited with light in the near‐infrared, which offers several advantages, from a deep tissue penetration capability or a reduced photodamage due to the lower photon energy, to a […]

Scanning tunneling microscopy (STM) is a technique in which a fine conducting probe is held close to the surface of a sample. Electrons tunnel between the sample and the probe, producing an electrical signal. The probe is slowly moved across […]

The concept of mean free path is very simple and straightforward: the average distance travelled between collisions by the molecules in a gas, the electrons in a metallic crystal, the neutrons in a moderator, etc. Assuming a couple of things […]

The so-called van der Waals materials consist of two-dimensional layers bound by weak van der Waals forces. After the isolation of graphene, the field of two-dimensional van der Waals materials has experienced an explosive growth and new families of […]

For centuries, metals were employed in optical applications only as mirrors and gratings. New vistas opened up in the late 1970s and early 1980s with the discovery of surface-enhanced Raman scattering (SERS) and the use of surface plasmon (collective electronic […]

If a nucleus has a nonzero spin, it behaves as a small magnet. Therefore, in an external magnetic field, the nuclear magnetic moment vector precesses about the field direction but only certain otientations are allowed by quantum rules. Thus, for […]