Category archives: Condensed matter

A Topological Phonon Database has been built

A Topological Phonon Database has been built

Condensed matterDIPC Advanced materialsQuantum physics

By DIPC

The discovery of materials with topologically nontrivial electronic bands has led to high-throughput computational efforts that uncovered such bands in most known inorganic crystalline materials. Thus, in 2017, a team of researchers presented what they called Topological Quantum Chemistry (TQC), a new and complete understanding of the structure of bands in a material that links […]

Parity-time symmetry for faster and stronger optical signal processing

Parity-time symmetry for faster and stronger optical signal processing

Condensed matterQuantum physics

By César Tomé

In the era of big data, signal processing faces significant challenges in terms of capacity and energy consumption due to the torrent of data to process. With over 90% of data transmitted through light, optical signal processing may offer unprecedented speed and energy efficiency compared to its electronic counterparts, as it operates without the need […]

Parallel-channel nanocryotrons in magnetic fields

Parallel-channel nanocryotrons in magnetic fields

Condensed matterNanotechnologyParticle physicsPhysics

By César Tomé

Superconductors can carry large electrical currents without any resistance. One situation where they don’t carry currents without resistance is when there is too much current. By designing microscopic electronic components made from very thin superconductors, researchers can use this effect to create a switch, like a transistor. Nanowire superconducting switching devices (called nanocryotrons, or nTrons […]

Contradictions in (Cs,K,Rb)V<sub>3</sub>Sb<sub>5</sub> are a feature, not a bug

Contradictions in (Cs,K,Rb)V3Sb5 are a feature, not a bug

Condensed matterDIPC Advanced materials

By DIPC

Spontaneously broken symmetries are at the heart of many phenomena of quantum matter and physics more generally. However, determining the exact symmetries that are broken can be challenging due to imperfections such as strain, in particular when multiple electronic orders are competing. This is exemplified by charge order in some kagome systems, where evidence of […]

The building block for magnetoelectric spin-orbit logic

The building block for magnetoelectric spin-orbit logic

Computer scienceCondensed matterMaterials

By César Tomé

Complementary metal–oxide–semiconductor (CMOS) is a type of metal–oxide–semiconductor field-effect transistor (MOSFET) fabrication process that uses complementary and symmetrical pairs of p-type and n-type MOSFETs for logic functions. CMOS technology is used for constructing integrated circuit chips, including microprocessors, microcontrollers, memory chips, and other digital logic circuits. After 50 years of continuous transistor size downscaling and […]

Ultrasensitive molecular sensing with surface-enhanced infrared absorption (SEIRA)

Ultrasensitive molecular sensing with surface-enhanced infrared absorption (SEIRA)

Condensed matterMaterialsNanotechnologyQuantum physics

By César Tomé

Sensors are essential tools for detecting and analysing trace molecules in a variety of fields, including environmental monitoring, food safety, and public health. However, developing sensors with high enough sensitivity to detect these tiny amounts of molecules remains a challenge. One promising approach is surface-enhanced infrared absorption (SEIRA), which uses plasmonic nanostructures to amplify the […]

First experimental evidence of hopfions in crystals

First experimental evidence of hopfions in crystals

Condensed matterMaterialsPhysics

By César Tomé

Hopfions, magnetic spin structures predicted decades ago, have become a hot and challenging research topic in recent years. The first experimental evidence has just been presented in Nature . A deeper understanding of how different components of materials function is important for the development of innovative materials and future technology. The research field of spintronics […]

Purple bronze, from insulator to superconductor and back

Purple bronze, from insulator to superconductor and back

Condensed matterQuantum physics

By César Tomé

Purple bronze Scientists have discovered a rare phenomenon that could hold the key to creating a ‘perfect switch’ in quantum devices which flips between being an insulator and superconductor. The research found these two opposing electronic states exist within lithium molybdenum purple bronze, a unique one-dimensional metal composed of individual conducting chains of atoms. Tiny […]

Milestone in the quest for THz magnonic devices working at room temperature

Milestone in the quest for THz magnonic devices working at room temperature

Condensed matterDIPC Advanced materialsMaterials

By DIPC

Magnons or spin waves are elementary quasiparticles, which represent a collective motion of magnetic moments in ordered systems. Spin waves can propagate in materials and therewith transport a spin current. This spin flow requires no electrical charge transport and therefore no electrical losses creating Joule heating. Spin waves enclose a wide frequency range, from gigahertz […]