Category archives: Physics

Rare events and time crystals

Rare events and time crystals

Physics

By Instituto Carlos I

The concept of crystal is very old, and it is strongly related to symmetries. Basically, a crystal is a system with a repeated pattern through space. For instance, in ice the water molecules form a hexagonal pattern, giving rise to many different macroscopic forms. But, can it happen that a system presents a pattern not […]

Desorption as a first-order phase transition

Desorption as a first-order phase transition

ChemistryCondensed matterDIPC PolymersPhysics

By DIPC

Adsorption commonly is understood as the reversible binding of molecules and atoms from the gaseous or liquid phase on surfaces, mostly of highly porous adsorbent media. In chemisorption a single layer of molecules, atoms or ions is attached to the adsorbent surface by chemical bonds; in physisorption only van der Waals forces are involved. Adsorption […]

Maxwell’s demon and the relationship between information and irreversibility

Maxwell’s demon and the relationship between information and irreversibility

Physics

By Patrice Camati

Thermodynamics is one of the oldest physical theories with its origins going back to the beginnings of the 19th century. The theory was initially developed to tackle practical problems, such as the performance of steam engines. However, within a few decades, thermodynamics was formulated on firm grounds providing one of the most fundamental laws of […]

Universal speed limits in thermodynamics away from equilibrium

Universal speed limits in thermodynamics away from equilibrium

DIPC Quantum SystemsPhysicsTheoretical physics

By DIPC

Many problems in science and engineering involve understanding how quickly a physical system transitions between distinguishable states and the energetic costs of advancing at a given speed. While theories such as thermodynamics and quantum mechanics put fundamental bounds on the dynamical evolution of physical systems, the form and function of the bounds differ. Rudolf Clausius’s […]

An additional contribution to the spin Hall effect induced by an electric current

An additional contribution to the spin Hall effect induced by an electric current

Condensed matterMaterialsPhysicsTheoretical physics

By DIPC

The interactions between moving charges and magnetic fields can be quite complicated; more if we consider the quantum effects. One example is the collection of Hall effects. Imagine that we have a conductor or a semiconductor through which a current is flowing. Then we apply a strong transverse magnetic field. As a result, we can […]

Direct observation of dynamic tube dilation in entangled polymer blends

Direct observation of dynamic tube dilation in entangled polymer blends

ChemistryCondensed matterMaterialsPhysics

By DIPC

One of the unique features of the chemistry of carbon (and, to some extent, silicon) is its ability to form long chains of atoms. Polymers are substances that have macromolecules composed of many repeating units (known as ‘mers’). Many naturally occurring substances are polymers, including rubber and many substances based on glucose, such as the […]

The attosecond dynamics underlying the photoelectric effect

The attosecond dynamics underlying the photoelectric effect

Condensed matterMaterialsPhysics

By DIPC

In 1882, Heinrich Hertz devoted himself to the study of electromagnetism, including the recent and still generally unappreciated work of Maxwell. Two years later he began his famous series of experiments with electromagnetic waves. During the course of this work, Hertz discovered the photoelectric effect, which has had a profound influence on modern physics. The […]

Topology as a parameter: an artificial electronic high-order topological insulator

Topology as a parameter: an artificial electronic high-order topological insulator

MaterialsPhysics

By DIPC

Quantum simulators—systems that can be engineered and manipulated at will—are useful platforms for verifying model Hamiltonians and understanding more complex or elusive quantum systems. The ability to trap and control particles with the help of well-controlled electromagnetic fields has led to revolutionary advances in the fields of biology, condensed- matter physics, high-precision spectroscopy, and quantum […]