Category archives: Condensed matter

Using an optical antenna to launch phonon polaritons in a low-dimensional van der Waals crystal

Using an optical antenna to launch phonon polaritons in a low-dimensional van der Waals crystal

Condensed matterMaterialsNanotechnologyQuantum physics

By DIPC

The so-called van der Waals materials consist of two-dimensional layers bound by weak van der Waals forces. After the isolation of graphene, the field of two-dimensional van der Waals materials has experienced an explosive growth and new families of two-dimensional systems and block-layered bulk materials have been created. This growth has been fueled mainly by […]

The extreme nanophotonics of the plasmonic nanopatch

The extreme nanophotonics of the plasmonic nanopatch

Condensed matterMaterialsNanotechnologyQuantum physics

By DIPC

For centuries, metals were employed in optical applications only as mirrors and gratings. New vistas opened up in the late 1970s and early 1980s with the discovery of surface-enhanced Raman scattering (SERS) and the use of surface plasmon (collective electronic oscillations at the surface of metals) resonances for sensing. In a simplified picture and in […]

First direct visualization by photoemision of how the Luttinger theorem works for Kondo lattices

First direct visualization by photoemision of how the Luttinger theorem works for Kondo lattices

Condensed matterMaterialsPhysics

By DIPC

Elements with 4f or 5f electrons in unfilled electron bands and their componuds , which have ions carrying magnetic moments but do not magnetically order, or only do so at very low temperatures, are generally known as heavy-fermion or heavy electron systems because the scattering of the conduction electrons with the magnetic ions results in […]

First nondestructive enantioselective detection technique

First nondestructive enantioselective detection technique

ChemistryCondensed matterMaterialsNanotechnology

By DIPC

If a nucleus has a nonzero spin, it behaves as a small magnet. Therefore, in an external magnetic field, the nuclear magnetic moment vector precesses about the field direction but only certain otientations are allowed by quantum rules. Thus, for hydrogen (spin 1/2) there are two possible states in the presence of a field, each […]

Finite size analogue of a heavy Fermi liquid in an atomic scale Kondo lattice

Finite size analogue of a heavy Fermi liquid in an atomic scale Kondo lattice

Condensed matterMaterialsPhysicsQuantum physics

By DIPC

The scattering of conduction electrons in metals owing to impurities with magnetic moments is known as the Kondo effect, after Jun Kondo, who analysed the phenomenon in 1964. This scattering increases the electrical resistance and has the consequence that, in contrast to ordinary metals, the resistance reaches a minimum as the temperature is lowered and […]

Diradical character a condition for stable n-type doped organic conducting materials

Diradical character a condition for stable n-type doped organic conducting materials

ChemistryCondensed matterMaterials

By DIPC

Many aromatic compounds can be made into organic semiconductors by doping them with a substance such as iodine, thereby producing mobile carriers of electric charge. This is analogous to the doping of silicon in an ordinary semiconductor. The benefits of using organic compounds are evident, namely, the resources are available everywhere, extremely cheap, and there […]

Hexagonal boron nitride monolayer films can be successfully grown on a curved Ni(1 1 1) substrate

Hexagonal boron nitride monolayer films can be successfully grown on a curved Ni(1 1 1) substrate

ChemistryCondensed matterMaterialsPhysics

By DIPC

Since the discovery of graphene, a wide diversity of atomic-layer-thick, two-dimensional (2D) materials with varied properties have emerged. Of particular interest are those that exhibit semiconducting behavior, such as hexagonal boron nitride (hBN). hBN is isoelectronic to graphene and has also a honeycomb lattice formed by alternating nitrogen and boron atoms, but in contrast to […]