Category Archives: Condensed matter

Graphene is one of the most promising materials for nanoelectronics owing to its unique Dirac cone-like dispersion of the electronic state and high mobility of the charge carriers. We all know that already, provided we are a little bit […]

How would you measure the dynamic viscosity of cytosol, the liquid inside the cells, without destroying the cell? It seems not an easy task. However, a team of researchers that includes Nuno de Sousa (DIPC & IFIMAC), has just […]

Worldwide research efforts on plasmons and metamaterials have been growing exponentially for the past ten years. Now, Antonio I. Fernández-Domínguez (IFIMAC), Francisco J. García-Vidal (IFIMAC & DIPC), and Luis Martín-Moreno (ICMA) discuss new directions for the future, such as the […]

Imagine there exist a material in which an electron could be split into two quasiparticles. These two quasiparticles both would carry electric charge, move in opposite directions but could not move backwards. Furthermore these quasiparticles would be massless. And […]

Graphene nanoribbons (GNRs), are strips of graphene with ultra-thin width (<50 nm). Graphene ribbons were introduced as a theoretical model by Mitsutaka Fujita and coauthors to examine the edge and nanoscale size effect in graphene. GNRs are very interesting structures, […]

Beginning in 1928, Felix Bloch, an assistant to Werner Heisenberg in Leipzig, began to make some realistic assumptions in an attempt to formulate a more complete quantum mechanics of electrical conductivity. First, because he wanted to assign a definite momentum […]

During World War II the Germans relied on their strong chemical knowledge to overcome the limited access to critical raw materials that the circumstances of the war itself imposed. One of these raw materials was Chilean saltpeter (sodium nitrate), […]

Common glass, used in windows or bottles, for example, is made by heating a mixture of calcium oxide (lime), sodium carbonate (soda), and silicon (IV) oxide (sand), resulting in a calcium silicate. This silicate is not a crystal but a […]

When we approximate two superconducting materials at low temperature, so that they are only separated by a very thin layer (less than 10 nanometres thick) of an insulating material, some new and very interesting electrical effects can be observed. If […]

Gold is the quintessential noble metal. Its lack of chemical reactivity, particularly to acids and atmospheric corrosion, together with is rarity and malleability make it the precious metal it is since ancient times. Today, if we go for a […]