Author Archives: DIPC

<span property="name">DIPC</span>
Donostia International Physics Center (DIPC) is a singular research center born in 2000 devoted to research at the cutting edge in the fields of Condensed Matter Physics and Materials Science. Since its conception DIPC has stood for the promotion of excellence in research, which demands a flexible space where creativity is stimulated by diversity of perspectives. Its dynamic research community integrates local host scientists and a constant flow of international visiting researchers.

The so-called van der Waals materials consist of two-dimensional layers bound by weak van der Waals forces. After the isolation of graphene, the field of two-dimensional van der Waals materials has experienced an explosive growth and new families of […]

For centuries, metals were employed in optical applications only as mirrors and gratings. New vistas opened up in the late 1970s and early 1980s with the discovery of surface-enhanced Raman scattering (SERS) and the use of surface plasmon (collective electronic […]

Elements with 4f or 5f electrons in unfilled electron bands and their componuds , which have ions carrying magnetic moments but do not magnetically order, or only do so at very low temperatures, are generally known as heavy-fermion or heavy […]

We all know what an insulator is, don’t we? An insulator is any substance that is a poor conductor of heat and electricity. Both properties ussually occur as a consequence of a lack of mobile electrons.If we want to dive […]

For a successful application in spintronics of any material, a key problem is to get a reliable control of the electronic spin within it. An ideal candidate for this purpose would be any material which is non-magnetic in the bulk […]

If a nucleus has a nonzero spin, it behaves as a small magnet. Therefore, in an external magnetic field, the nuclear magnetic moment vector precesses about the field direction but only certain otientations are allowed by quantum rules. Thus, for […]

The scattering of conduction electrons in metals owing to impurities with magnetic moments is known as the Kondo effect, after Jun Kondo, who analysed the phenomenon in 1964. This scattering increases the electrical resistance and has the consequence that, in […]

Many aromatic compounds can be made into organic semiconductors by doping them with a substance such as iodine, thereby producing mobile carriers of electric charge. This is analogous to the doping of silicon in an ordinary semiconductor. The benefits of […]

Since the discovery of graphene, a wide diversity of atomic-layer-thick, two-dimensional (2D) materials with varied properties have emerged. Of particular interest are those that exhibit semiconducting behavior, such as hexagonal boron nitride (hBN). hBN is isoelectronic to graphene and has […]

The way a particular reaction proceeds, described in terms of the steps involved, is called mechanism. The study of organic chemistry is, to a great extent, the study of reaction mechanisms and textbooks content both their description and their applications. […]