Category archives: DIPC Biochemistry

How to detect the daughter atom of a neutrinoless double beta decay

How to detect the daughter atom of a neutrinoless double beta decay

ChemistryDIPC BiochemistryDIPC InterfacesDIPC Particle PhysicsMaterialsParticle physics

By DIPC

A new fluorescent bicolour indicator, an organic molecule, could help detect the daughter atom of a neutrinoless double beta decay. If this is achieved, there would be an explanation to the matter-anti matter asymmetry in the universe. Experiments performed in 1909 by Geiger and Marsden, also called Rutherford gold foil experiment because Rutherford was their […]

Huisgenases, new protein catalysts which are not enzymes

Huisgenases, new protein catalysts which are not enzymes

ChemistryDIPC BiochemistryMaterials

By DIPC

Proteins can perform a huge number of biological functions with amazing efficiency. In order to achieve these different functions, proteins rely on the precise 3D arrangement of functional groups which are referred to as the protein fold. Some of these functions include acting as a catalyst in biochemical reactions; in these cases proteins are called […]

Modified DNA catalysts for chemical reactions in water

Modified DNA catalysts for chemical reactions in water

BiochemistryChemistryCondensed matterDIPC Biochemistry

By DIPC

We all know that the main role of DNA is the storage of genomic information leading to the biosynthesis of proteins via diverse forms of RNA. In turn, proteins play multiple roles in living systems, catalysis being among the most important ones. These are the standard functions that we may find in any general chemistry […]

Riboflavin as a bioorthogonal photocatalyst

Riboflavin as a bioorthogonal photocatalyst

ChemistryCondensed matterDIPC BiochemistryDIPC PhotochemistryPharmacy

By DIPC

The combination of catalysis and bioorthogonality promises have an impact on drug discovery and bioimaging. Bioorthogonality, a term coined by Carolyn R. Bertozzi in 2003, refers to any chemical reaction that can occur inside of living systems without interfering with native biochemical processes. Hence, catalytic turnover can boost the efficiency of bioorthogonal chemical reactions, unveiling […]