Category archives: DIPC Photonics

New paradigm for the design of nonlinear nanoscale optical devices

New paradigm for the design of nonlinear nanoscale optical devices

CFMDIPCDIPC Photonics

By DIPC

Modern technologies enable the design and nanofabrication of photonic devices for manipulation of optical fields on spatial scales much smaller than the wavelength of light. In particular, the resonant coupling of photons with collective electronic excitations in metals and two-dimensional materials, i.e., plasmons, can be used to engineer strongly enhanced near fields confined to the […]

A giant optomechanical spring effect in plasmonic nanocavities

A giant optomechanical spring effect in plasmonic nanocavities

CFMDIPCDIPC Photonics

By DIPC

Molecular vibrations couple to visible light only weakly, have small mutual interactions, and hence are often ignored for non-linear optics. Still, molecular vibrations dominate electronic, thermal, and spin transport in a wide range of devices from photovoltaics to molecular electronics as well as being of fundamental interest. Surface-Enhanced Raman Spectroscopy (SERS) is well-established for studying […]

Optimal colorimetric sensing based on gold nanoparticle aggregation

Optimal colorimetric sensing based on gold nanoparticle aggregation

Materials

By DIPC

Spurred by outstanding optical properties, chemical stability, and facile bioconjugation, plasmonic metals have become the first-choice materials for optical signal transducers in biosensing. While the design rules for surface-based plasmonic sensors are well-established and commercialized, there is limited knowledge of the design of sensors based on nanoparticle aggregation. The working principle of biosensors built around […]

The vectorial features of the boundary-bulk correspondence in 3D Chern insulators

The vectorial features of the boundary-bulk correspondence in 3D Chern insulators

DIPC Advanced materials

By DIPC

Some materials have special universal properties protected against perturbations. Such properties are theoretically described by topology, a branch of mathematics concerned with the properties of geometrical objects that are unchanged by continuous deformations. So-called topological insulators are electronic materials that have a bulk band gap like an ordinary insulator but have conducting states on their […]

Spoof surface plasmons

Spoof surface plasmons

DIPCDIPC Photonics

By DIPC

When the surface of a perfect conductor is structured at a length scale much smaller than the operating wavelength, geometrically induced surface electromagnetic modes can be supported. Owing to their similarities with the surface plasmon polaritons in the optical regime, these surface electromagnetic modes were named spoof surface plasmons. A new review provides a detailed […]

Chirality and the next revolution in quantum devices

Chirality and the next revolution in quantum devices

CFMDIPCDIPC Photonics

By DIPC

Usually, optical activity is understood as the ability some substances have to change the handedness of polarized light when it goes through them. Molecules that show optical activity have no plane of symmetry. So-called chiral matter broadly describes structures for which left- or right-handed mirror images are non-superimposable, or, equivalently, that lack improper rotation axes […]

3D topological photonic crystals whith Chern vectors at will

3D topological photonic crystals whith Chern vectors at will

DIPC Advanced materials

By DIPC

Some materials have special universal properties protected against perturbations. Such properties are theoretically described by topology, a branch of mathematics concerned with the properties of geometrical objects that are unchanged by continuous deformations. So-called topological insulators are electronic materials that have a bulk band gap like an ordinary insulator but have conducting states on their […]