Category Archives: DIPC

On 8 October 2013, following the discovery at CERN’s Large Hadron Collider of a new particle that appeared to be the long-sought Higgs boson predicted by the theory, it was announced that Peter Higgs and François Englert had been awarded […]

A region containing a maximum of potential that prevents a particle on one side of it from passing to the other side is called a potential barrier. The net in a tennis court is in a certain way a potential […]

The concept of vector should be familiar: a quantity for which both magnitude and direction must be stated. This compares with a scalar quantity, where direction is not applicable, like temperature in a precise point. But, what if the magnitude […]

The so-called van der Waals materials consist of two-dimensional layers bound by weak van der Waals forces. After the isolation of graphene, the field of two-dimensional van der Waals materials has experienced an explosive growth and new families of […]

Controlling electron waves by harnessing phase-coherence and interference effects is a cornerstone for future nanoelectronics or quantum computing. To this end, design of platforms with well-defined, narrow, and low-loss propagation channels is essential. Nanoporous graphene (NPG) holds great potential for […]

Every year the amount of data produced is of the order of magnitude of the Avogadro’s constant, thus 6.028×1023. This trend is supposed to increase even more in the next future. This implies that more and more special […]

One of the ultimate goals in surface science is to comprehend the fundamental processes that make that surface reactions need less than a picosecond (10-12 s) to occur. This means understanding what is happening at the scale of […]

Topological materials have special universal properties, which are protected against perturbations. Such properties are theoretically described by topology, a branch of mathematics concerned with the properties of geometrical objects that are unchanged by continuous deformations. Topological materials behave like an […]

Nature is a source of inspiration for scientists. If the efficiency of natural processes efficiency has been honed by billions of years of evolution, it seems reasonable that the best way to achieve some process is to try and mimic […]

Light waves spread and bend as they pass through an aperture or round the edge of a barrier. This is a well-known phenomenon called diffraction. Diffraction imposes a limit to the size of objects that we can observe sharply […]