Category archives: CFM

An intriguing link between Kerker conditions and energy conservation from fundamental principles

An intriguing link between Kerker conditions and energy conservation from fundamental principles

Condensed matterMaterials

By DIPC

A nanoantenna with balanced electric and magnetic dipole moments exhibits a directive radiation pattern with zero backscattering. This is known as the first Kerker condition after Kerker, Wang, and Giles, who predicted in 1983 that, under plane wave illumination, magnetic spheres with equal relative permittivity and permeability radiate no light in the backscattering direction. They […]

The critical role of single atoms on the electronic properties of a metal organic network

The critical role of single atoms on the electronic properties of a metal organic network

ChemistryDIPC InterfacesMaterials

By DIPC

Organic-based materials have gained rising interest as active components in electronics, energy conversion and catalytic systems. However, the discrete nature of the molecular constituents of these systems implies a reduced electron conductance, lowering the device efficiency. In order to increase the electron delocalization through an improved structural order, which favors orbital overlap and consequently the […]

Labeling anticancer gold complexes to study their organ accumulation in vivo

Labeling anticancer gold complexes to study their organ accumulation in vivo

ChemistryDIPC PhotochemistryPharmacy

By DIPC

Auranofin is a gold (Au) salt classified by the World Health Organization as an antirheumatic agent. It was approved for the treatment of rheumatoid arthritis in 1985, but is no longer a first-line treatment due to its adverse effects on a long-term basis. But the drug is important in another way. The discovery that auranofin […]

Black metallic hydrogen due to proton quantum fluctuations

Black metallic hydrogen due to proton quantum fluctuations

Condensed matterMaterialsQuantum physics

By DIPC

The most famous conjecture in condensed-matter physics was proposed in 1935, when Hillard Huntington and Eugene Wigner calculated the properties of hydrogen squeezed to high density and pressure. They predicted that under pressures above 25 gigapascals (GPa), hydrogen would undergo a density-driven transition from an insulating, molecular solid to a conducting, atomic solid. In their […]

A photonic picocavity in action

A photonic picocavity in action

NanotechnologyQuantum physics

By DIPC

Light emission from emitters is a valuable piece of information in a variety of sensing and detection techniques, capable of labeling physical and biological processes which occur in the proximity of the emitter. Furthermore, quantum technologies are currently exploiting the statistics of single-emitters light emission aiming at turning particular emitters into fundamental units to sustain […]

An accurate and predictive model for the infrared dielectric function of a van der Waals material

An accurate and predictive model for the infrared dielectric function of a van der Waals material

Condensed matterMaterials

By DIPC

Future information and communication technologies will rely on the manipulation of not only electrons but also of light at the nanometer-scale. Squeezing light to such a small size has been a major goal in nanophotonics for many years. Particularly strong light squeezing can be achieved with polaritons, quasiparticles resulting from the strong coupling of photons […]

How to detect the daughter atom of a neutrinoless double beta decay

How to detect the daughter atom of a neutrinoless double beta decay

ChemistryMaterialsParticle physics

By DIPC

A new fluorescent bicolour indicator, an organic molecule, could help detect the daughter atom of a neutrinoless double beta decay. If this is achieved, there would be an explanation to the matter-anti matter asymmetry in the universe. Experiments performed in 1909 by Geiger and Marsden, also called Rutherford gold foil experiment because Rutherford was their […]