Category Archives: CFM

There is a variable that is relevant for such seemingly different fields as outer space exploration , nanotechnology , fusion research , or medicine. And that is electronic stopping, its precise knowledge important for the understanding of space weathering, ion […]

According to how the electronic band theory is usually explained, solids can be classified as insulators, semiconductors, or metals. But, actually, there is another kind of solid between semiconductors and metals, the semimetals. In insulators and semiconductors the filled […]

In 1882, Heinrich Hertz devoted himself to the study of electromagnetism, including the recent and still generally unappreciated work of Maxwell. Two years later he began his famous series of experiments with electromagnetic waves. During the course of this work, […]

Major technological revolutions have occurred when the humankind has been able to harness natural resources, such as fire, electricity or nuclear energy. We are now in the verge of the so called second quantum revolution, that aims to harness two […]

Topological insulators are electronic materials that have a bulk band gap like an ordinary insulator but have conducting states on their edge or surface. The conducting surface is not what makes topological insulators unique, but the fact that it is […]

Since the discovery that graphene, the two dimensional carbon allotrope, can be isolated and incorporated into electronic devices intense research efforts have been triggered. Driving forces behind the experimental and theoretical studies of graphene are, e.g., the exceptional electronic properties, […]

We know that incident light can provoke a strong optical response in metallic nanostructures due to the excitation of resonant plasmonic modes, i.e, the electrons in the metal become excited by the photons in the incident light and oscillate collectively. […]

The Pioneer plaques are a pair of gold–anodized aluminium plaques which were placed on board the 1972 Pioneer 10 and 1973 Pioneer 11 spacecraft, featuring a pictorial message, in case either Pioneer 10 or 11 […]

Graphene is one of the most promising materials for nanoelectronics owing to its unique Dirac cone-like dispersion of the electronic state and high mobility of the charge carriers. We all know that already, provided we are a little bit interested […]

Graphene nanoribbons (GNRs), are strips of graphene with ultra-thin width (
GNRs are very interesting structures, partly due to their attractive electronic properties. Those properties vary dramatically with changes in the nanoribbon’s atomic structure in terms of width, crystallographic […]