Category archives: DIPC Advanced materials

Substrate dependency of the charge density wave orders of monolayer VSe<sub>2</sub>

Substrate dependency of the charge density wave orders of monolayer VSe2

Condensed matterDIPC Advanced materialsMaterials

By DIPC

Two-dimensional (2D) materials are an ideal platform to artificially engineer heterostructures with new functionalities due to the weak van der Waals bonding between layers. Monolayers hosting symmetry-broken phases, such as superconductivity, magnetism, ferroelectricity, charge density waves (CDWs), or multiferroicity, represent the most interesting building blocks to design novel phases of matter. One of the main […]

Mermin–Wagner theorem for practical length scales

Mermin–Wagner theorem for practical length scales

DIPC Advanced materialsMaterials

By DIPC

Mermin–Wagner The demand for computational power is increasing exponentially, following the amount of data generated across different devices, applications and cloud platforms. To keep up with this trend, smaller and increasingly energy-efficient devices must be developed, which require the study of compounds not yet explored in data-storage technologies. The discovery of magnetically stable 2D van […]

Engineering the orbital character of the electronic structure of superconducting cuprates

Engineering the orbital character of the electronic structure of superconducting cuprates

DIPC Advanced materials

By DIPC

Yttrium barium copper oxide (YBCO) is a family of crystalline chemical compounds that display high-temperature superconductivity; it includes the first material ever discovered to become superconducting above the boiling point of liquid nitrogen (77 K) at about 93 K. This family is known as cuprates as it can be viewed as containing anionic copper complexes […]

Strong chiral transport switched by small magnetic field changes

Strong chiral transport switched by small magnetic field changes

DIPC Advanced materials

By DIPC

Usually, optical activity is understood as the ability some substances have to change the handedness of polarized light when it goes through them. Molecules that show optical activity have no plane of symmetry. So-called chiral matter broadly describes structures for which left- or right-handed mirror images are non-superimposable, or, equivalently, that lack improper rotation axes […]

The new world of Rashba-like physics: mechanisms, materials, effects

The new world of Rashba-like physics: mechanisms, materials, effects

Condensed matterDIPC Advanced materials

By DIPC

Spintronic devices are based on the inherent spin magnetic moment of the electron, the same way electronic ones are on just its charge, to store and process information. These devices should, in theory, operate faster and at lower temperatures than their current electronic-only counterparts because an electron’s spin can be flipped much quicker than its […]

How quantum geometry governs superconductivity in twisted multilayer systems

How quantum geometry governs superconductivity in twisted multilayer systems

DIPC Advanced materials

By DIPC

The band theory of metals has been experimentally tested many times and is now the accepted model of the behaviour of conductors and insulators. Electrical resistance is due to collisions of the electrons (whether treated as particles or waves) with impurities, imperfections, and especially the lattice vibrations of the metal crystal. The lattice vibrations of […]

The vectorial features of the boundary-bulk correspondence in 3D Chern insulators

The vectorial features of the boundary-bulk correspondence in 3D Chern insulators

DIPC Advanced materials

By DIPC

Some materials have special universal properties protected against perturbations. Such properties are theoretically described by topology, a branch of mathematics concerned with the properties of geometrical objects that are unchanged by continuous deformations. So-called topological insulators are electronic materials that have a bulk band gap like an ordinary insulator but have conducting states on their […]

A general procedure to design materials with topological semimetal phases

A general procedure to design materials with topological semimetal phases

DIPC Advanced materials

By DIPC

Electron correlations and topology are well established as engines for surprising and potentially functional properties. Strong correlations promote quantum fluctuations, which engender abundant phases of matter and various quantum phase transitions. Meanwhile, extensive developments have taken place in noninteracting electron systems, especially those with sizable spin-orbit couplings. It can reasonably be expected that the intersection […]

The dominant role of many-body correlations in TMDs superconductivity

The dominant role of many-body correlations in TMDs superconductivity

DIPC Advanced materialsDIPC Interfaces

By DIPC

Several classes of correlated electron systems such as cuprates, iron-pnictides, iron-chalcogenides, and several heavy-fermion compounds, have been identified as unconventional superconductors. More recently, superconductivity with unconventional features has also been identified in twisted bilayer graphene. In this vein, the electronic correlations intrinsically present in transition metal dichalcogenides (TMDs), a family of layered materials, are promising […]