Category archives: DIPC Advanced materials

Topology for every electronic band

Topology for every electronic band

DIPC Advanced materials

By DIPC

For the past century, students of chemistry, materials science, and physics have been taught to model solid-state materials by considering their chemical composition, the number and location of their electrons, and lastly, the role of more complicated interactions. However, an international team of scientists has recently discovered that an additional ingredient must also be equally […]

Evolution of a 2D alloy throughout the metal to semiconductor transition

Evolution of a 2D alloy throughout the metal to semiconductor transition

ChemistryDIPC Advanced materialsMaterials

By DIPC

Transition metal dichalcogenides (TMDs) are layered compounds which can be thinned down to the single-layer limit. While mechanical exfoliation generates atomically thin TMD flakes possessing an area of a few square microns, chemical and physical methods provide high-quality monolayers on large-area substrates, which are suitable for actual technological applications. TMDs are a class of van […]

Phason dynamics are key to understand electronics in twisted moiré systems

Phason dynamics are key to understand electronics in twisted moiré systems

DIPC Advanced materialsDIPC Electronic Properties

By DIPC

A quasicrystal is a solid structure in which there is long-range incommensurate translational order and a long-range orientational order with a point group. Translated, this simply means that a quasicrystal is ordered but not periodic and, still, it can fill space completely. In two dimensions, the fivefold symmetry of a pentagon is an example of […]

Fine-tuning the speed of magnetic devices

Fine-tuning the speed of magnetic devices

Condensed matterDIPC Advanced materialsMaterials

By DIPC

Some metals, alloys and transition-element salts exhibit a form of magnetism called antiferromagnetism. This occurs below a certain temperature, named after Louis Néel, when an ordered array of atomic magnetic moments spontaneously forms in which alternate moments have opposite directions. There is therefore no net resultant magnetic moment in the absence of an applied field […]

Deformations of moiré patterns in twisted bilayer graphene

Deformations of moiré patterns in twisted bilayer graphene

DIPC Advanced materialsMaterials

By DIPC

Twistology could be the study of unexpected changes or developments in stories or situations, from coups d’état to the fatherhood of Darth Vader. In condensed matter physics there is something similar, although the preferred name is twistronics (from twist and electronics). It is understood as the study of how the angle (the twist) between layers […]

3D topological photonic crystals whith Chern vectors at will

3D topological photonic crystals whith Chern vectors at will

DIPC Advanced materials

By DIPC

Some materials have special universal properties protected against perturbations. Such properties are theoretically described by topology, a branch of mathematics concerned with the properties of geometrical objects that are unchanged by continuous deformations. So-called topological insulators are electronic materials that have a bulk band gap like an ordinary insulator but have conducting states on their […]

Discovering topological materials from symmetry

Discovering topological materials from symmetry

DIPC Advanced materialsMaterials

By DIPC

Topological materials have special universal properties, which are protected against perturbations. The name comes from the fact that such properties are theoretically described by topology, a branch of mathematics concerned with the properties of geometrical objects that are unchanged by continuous deformations. Topological materials behave like an ordinary insulator in the bulk but have conducting […]