Category Archives: Quantum physics

Every year the amount of data produced is of the order of magnitude of the Avogadro’s constant, thus 6.028×1023. This trend is supposed to increase even more in the next future. This implies that more and more special […]

One of the ultimate goals in surface science is to comprehend the fundamental processes that make that surface reactions need less than a picosecond (10-12 s) to occur. This means understanding what is happening at the scale of […]

Topological materials have special universal properties, which are protected against perturbations. Such properties are theoretically described by topology, a branch of mathematics concerned with the properties of geometrical objects that are unchanged by continuous deformations. Topological materials behave like an […]

Quantum computing is the future. Or the present, if you believe that some real quantum computers are commercially available already. Because it is hard to admit that any computer system whose design and theoretical basis depend on quantum effects […]

In physics there are some well-known fictional characters: the experimenters Alice & Bob, Maxwell’s and Laplace’s demons, or some astronauts travelling at incredible speeds, to name a few. But the queen of them all is a cat. Yes, you guess […]

You can read this article because I have used photonics in order to make it possible. It may sound futuristic, but photonics is a technology we use, one way or the other, on a daily basis. Photonic devices are analogous […]

Some metals, alloys and transition-element salts exhibit a form of magnetism called antiferromagnetism. This occurs below a certain temperature, named after Louis Néel, when an ordered array of atomic magnetic moments spontaneously forms in which alternate moments have opposite directions. […]

Two-dimensional materials, such as transition-metal dichalcogenides embedded in optical cavities, stand out as an excellent platform where strong light-matter interactions can be studied. Moreover, their band structures bring about nontrivial topological features, including the possibility of inducing some really […]

One of the most mysterious features of quantum mechanics is that if two particles (or photons) interact at some point in time then the properties of these particles will remain connected at future times. A consequence of this is that […]

A quantum dot is a nanometric crystalline structure of semiconductor materials. In a quatum dot electrons are confined in a region of space, thus creating a well defined structure of energy levels that depends very much on the size and […]