Category archives: Quantum physics

Black metallic hydrogen due to proton quantum fluctuations

Black metallic hydrogen due to proton quantum fluctuations

Condensed matterMaterialsQuantum physics

By DIPC

The most famous conjecture in condensed-matter physics was proposed in 1935, when Hillard Huntington and Eugene Wigner calculated the properties of hydrogen squeezed to high density and pressure. They predicted that under pressures above 25 gigapascals (GPa), hydrogen would undergo a density-driven transition from an insulating, molecular solid to a conducting, atomic solid . In […]

A photonic picocavity in action

A photonic picocavity in action

NanotechnologyQuantum physics

By DIPC

Light emission from emitters is a valuable piece of information in a variety of sensing and detection techniques, capable of labeling physical and biological processes which occur in the proximity of the emitter. Furthermore, quantum technologies are currently exploiting the statistics of single-emitters light emission aiming at turning particular emitters into fundamental units to sustain […]

Measuring electron-phonon interaction in multidimensional materials with helium atom scattering

Measuring electron-phonon interaction in multidimensional materials with helium atom scattering

Condensed matterMaterialsQuantum physics

By DIPC

The discovery of superconductivity in 2D films dates back over 80 years. Initially, these were 2D metallic films deposited on inert substrates, but in recent times more exotic 2D systems have exhibited superconducting properties, such as the surface of topological insulators or twisted bilayer graphene. Superconductivity is caused by the interactions between atomic vibrations (phonons) […]

Chirality can be used to control the sign of a maximal Chern number

Chirality can be used to control the sign of a maximal Chern number

ChemistryCondensed matterMaterialsQuantum physics

By DIPC

The magnitude of many of the exotic phenomena predicted for topological semimetals is directly proportional to something called the Chern number. Given the importance of the Chern number magnitude for these phenomena, it is just natural to wonder whether there is an upper limit for it and whether there are real materials in which this […]

High temperatures and strong random interactions need not destroy many-body quantum entanglement

High temperatures and strong random interactions need not destroy many-body quantum entanglement

Condensed matterQuantum physics

By DIPC

One of the most mysterious features of quantum mechanics is that if two particles (or photons) interact at some point in time then the properties of these particles will remain connected at future times. A consequence of this is that determining the quantum state of one of the particles simultaneously determines the quantum state of […]