Category archives: CFM

Epitaxial films of a transition metal dihalide grown on gold

Epitaxial films of a transition metal dihalide grown on gold

DIPC Electronic PropertiesDIPC Interfaces

By DIPC

Magnetic two-dimensional (2D) semiconductors have attracted a lot of attention because modern preparation techniques are capable of providing single crystal films of these materials with precise control of thickness down to the single-layer limit. It opens up a way to study a rich variety of electronic and magnetic phenomena with promising routes towards potential applications […]

A giant optomechanical spring effect in plasmonic nanocavities

A giant optomechanical spring effect in plasmonic nanocavities

CFMDIPCDIPC Photonics

By DIPC

Molecular vibrations couple to visible light only weakly, have small mutual interactions, and hence are often ignored for non-linear optics. Still, molecular vibrations dominate electronic, thermal, and spin transport in a wide range of devices from photovoltaics to molecular electronics as well as being of fundamental interest. Surface-Enhanced Raman Spectroscopy (SERS) is well-established for studying […]

Crosslinking pectin for the simultaneous removal of multiple pollutants from water

Crosslinking pectin for the simultaneous removal of multiple pollutants from water

Chemical engineeringChemistryDIPC Polymers

By DIPC

Chemical contamination of water bodies on one hand, and water shortages due to overexploitation on the other, have increased the need for effective and efficient water treatment and decontamination processes. Two important aspects need to be taken into consideration to define what is an “effective and efficient” treatment. First, as current methods of removing pathogens […]

A new qubit platform, created atom by atom

A new qubit platform, created atom by atom

DIPC Electronic PropertiesDIPC Interfaces

By DIPC

An international research team has presented a new quantum platform based on the electron spin of single atoms on a solid surface, achieving a ‘multiple qubit (quantum bit)’ system using three electron spins. Unlike previous atomic quantum devices on surfaces where only a single qubit could be controlled, the researchers have successfully demonstrated the ability […]

Optimal colorimetric sensing based on gold nanoparticle aggregation

Optimal colorimetric sensing based on gold nanoparticle aggregation

Materials

By DIPC

Spurred by outstanding optical properties, chemical stability, and facile bioconjugation, plasmonic metals have become the first-choice materials for optical signal transducers in biosensing. While the design rules for surface-based plasmonic sensors are well-established and commercialized, there is limited knowledge of the design of sensors based on nanoparticle aggregation. The working principle of biosensors built around […]

Tunneling electrons excite a superconducting pair-breaking transition in the presence of magnetic impurities

Tunneling electrons excite a superconducting pair-breaking transition in the presence of magnetic impurities

Condensed matterDIPC Advanced materialsMaterialsQuantum physics

By DIPC

The development of superconducting devices was greatly stimulated after the acceptance of the basic theory of superconductivity proposed in 1957 by John Bardeen, Leon Cooper, and Robert Schrieffer – BCS theory. The basic idea is that the electron waves in the superconducting state no longer act independently, as in Bloch’s model. Instead, they are paired […]

Substrate dependency of the charge density wave orders of monolayer VSe<sub>2</sub>

Substrate dependency of the charge density wave orders of monolayer VSe2

Condensed matterDIPC Advanced materialsMaterials

By DIPC

Two-dimensional (2D) materials are an ideal platform to artificially engineer heterostructures with new functionalities due to the weak van der Waals bonding between layers. Monolayers hosting symmetry-broken phases, such as superconductivity, magnetism, ferroelectricity, charge density waves (CDWs), or multiferroicity, represent the most interesting building blocks to design novel phases of matter. One of the main […]