Category archives: CFM

The multiscale nature of picocavities: a classical view to a quantum effect

The multiscale nature of picocavities: a classical view to a quantum effect

CFMDIPC

By DIPC

Progress in nanotechnology has allowed controlling the morphology of metallic nanoparticles at the nanometer and even subnanometer scale, triggering the development of various applications in plasmonics and nanooptics, such as in enhanced vibrational spectroscopy, improvement of energy absorption of solar cells, optoelectronic circuits, quantum optics, nanosensing of biomolecules, or noninvasive thermotherapy in medicine. Most of […]

Spin control using chemical design

Spin control using chemical design

ChemistryCondensed matterMaterialsNanotechnology

By DIPC

During the last decades, the electronics industry has been very successful in pushing forward the advancement of electronic building blocks, but the limit of silicon-based electronic devices especially in terms of miniaturization are almost reached. There are many ideas how to overcome this problem, for example, by adding functionality based on approaches originating from molecular […]

Accurate simulation of aqueous-based electrochemical setups

Accurate simulation of aqueous-based electrochemical setups

ChemistryCondensed matterEnergyMaterialsPhysicsQuantum physics

By DIPC

Following the need for new and renewable sources of energy worldwide, fuel cells using electrocatalysts can be thought of as viable options. Catalyst materials modify and increase the rate of chemical reactions without itself undergoing any permanent change. An electrocatalyst is a catalyst that participates in electrochemical reactions and that functions at electrode surfaces or […]

Unexpected molecular core level shifts in nanoarchitectures

Unexpected molecular core level shifts in nanoarchitectures

ChemistryCondensed matterMaterialsNanotechnology

By DIPC

Mimicking natural processes has been a recurrent strategy for the development of new technologies, from velcro to bullet trains. Thanks to the advances in scientific knowledge and technological tools achieved over the last decades, biologically inspired research has evolved from the macroscale to the nanoscale. This poses an interdisciplinary challenge, involving fields such as molecular […]

Towards a bottom-up engineering of molecular spintronic devices

Towards a bottom-up engineering of molecular spintronic devices

ChemistryCondensed matterNanotechnology

By DIPC

During the last decades, the electronics industry has been very successful in pushing forward the advancement of electronic building blocks, but the limit of silicon-based electronic devices especially in terms of miniaturization are almost reached. There are many ideas how to overcome this problem, for example, by adding functionality based on approaches originating from molecular […]

A Kondo effect by manipulating spin chains

A Kondo effect by manipulating spin chains

Condensed matterMaterialsNanotechnology

By DIPC

The scattering of conduction electrons in metals owing to impurities with magnetic moments is known as the Kondo effect, after Jun Kondo, who analysed the phenomenon in 1964. This scattering increases the electrical resistance and has the consequence that, in contrast to ordinary metals, the resistance reaches a minimum as the temperature is lowered and […]

Breakdown of the free electron gas concept for electronic stopping

Breakdown of the free electron gas concept for electronic stopping

Condensed matterMaterialsQuantum physics

By DIPC

There is a variable that is relevant for such seemingly different fields as outer space exploration , nanotechnology , fusion research , or medicine. And that is electronic stopping, its precise knowledge important for the understanding of space weathering, ion beam patterning, plasma-wall interactions, or radiation therapy, respectively. When ions propagate in matter, they are […]