Category archives: Condensed matter

On-surface synthesis: a guide for explorers

On-surface synthesis: a guide for explorers

ChemistryCondensed matterMaterials

By DIPC

The way a particular reaction proceeds, described in terms of the steps involved, is called mechanism. The study of organic chemistry is, to a great extent, the study of reaction mechanisms and textbooks content both their description and their applications. But something has come to revolutionize the world of mechanisms: surface chemistry. On-surface synthesis is […]

Towards advanced room-temperature valleytronic nanodevices.

Towards advanced room-temperature valleytronic nanodevices.

Condensed matterMaterialsNanotechnologyPhysics

By DIPC

So-called “valleytronics” is a new type of electronics that could lead to faster and more efficient computer logic systems and data storage chips in next-generation devices. Valley electrons are so named because they carry a valley degree of freedom, a pseudospin. This is a new way to harness electrons for information processing that’s in addition […]

A higher spin generalization of Weyl fermions without equivalence in elementary particle physics

A higher spin generalization of Weyl fermions without equivalence in elementary particle physics

Condensed matterMaterialsQuantum physics

By DIPC

Back in 1929, theoretical physicist Hermann Weyl predicted the existence of a new elementary particle with intriguing properties. Specifically, it would be massless (like a photon), have half-integer spin (like an electron) and exist in two mirror-image versions (like left- and right-handed gloves)—a property known as chirality. Imagine there exist a material in which an […]

Why SnSe is so thermoelectrically efficient

Why SnSe is so thermoelectrically efficient

Condensed matterMaterialsPhysicsQuantum physics

By DIPC

With the possible exception of Avogadro’s number, which was in reality defined and made popular by Stanislao Cannizzaro, many things in the sciences are usually named after the person who makes them popular. The Seebeck effect is an example. Originally discovered in 1794 by Alessandro Volta, it is named after Thomas Johann Seebeck, who in […]

An efficient tensor network algorithm for capturing thermal states of 2D quantum lattice systems

An efficient tensor network algorithm for capturing thermal states of 2D quantum lattice systems

Condensed matterQuantum physicsTheoretical physics

By DIPC

The concept of vector should be familiar: a quantity for which both magnitude and direction must be stated. This compares with a scalar quantity, where direction is not applicable, like temperature in a precise point. But, what if the magnitude varies with the direction? A vector would be a particular case, with only one direction […]

A unique combination of properties in a van der Waals antiferromagnet

A unique combination of properties in a van der Waals antiferromagnet

Condensed matterMaterialsQuantum physics

By DIPC

The so-called van der Waals materials consist of two-dimensional layers bound by weak van der Waals forces. After the isolation of graphene, the field of two-dimensional van der Waals materials has experienced an explosive growth and new families of two-dimensional systems and block-layered bulk materials, such as tetradymite-like topological insulators – electronic materials that have […]

A Talbot carpet of electrons in nanoporous graphene

A Talbot carpet of electrons in nanoporous graphene

Condensed matterMaterialsNanotechnologyQuantum physicsTheoretical physics

By DIPC

Controlling electron waves by harnessing phase-coherence and interference effects is a cornerstone for future nanoelectronics or quantum computing. To this end, design of platforms with well-defined, narrow, and low-loss propagation channels is essential. Nanoporous graphene (NPG) holds great potential for distributing and controlling currents on the nanoscale. But the effects derived from the wave nature […]

Spin in a closed-shell organic molecule stabilized on a metallic surface

Spin in a closed-shell organic molecule stabilized on a metallic surface

ChemistryCondensed matterMaterialsNanotechnologyQuantum physics

By DIPC

Every year the amount of data produced is of the order of magnitude of the Avogadro’s constant, thus 6.028×1023. This trend is supposed to increase even more in the next future. This implies that more and more special metals will be needed. The point is: what might happen if the resources used for manufacturing common […]