Category archives: Quantum physics

Chirality can be used to control the sign of a maximal Chern number

Chirality can be used to control the sign of a maximal Chern number

ChemistryCondensed matterMaterialsQuantum physics

By DIPC

The magnitude of many of the exotic phenomena predicted for topological semimetals is directly proportional to something called the Chern number. Given the importance of the Chern number magnitude for these phenomena, it is just natural to wonder whether there is an upper limit for it and whether there are real materials in which this […]

High temperatures and strong random interactions need not destroy many-body quantum entanglement

High temperatures and strong random interactions need not destroy many-body quantum entanglement

Condensed matterQuantum physics

By DIPC

One of the most mysterious features of quantum mechanics is that if two particles (or photons) interact at some point in time then the properties of these particles will remain connected at future times. A consequence of this is that determining the quantum state of one of the particles simultaneously determines the quantum state of […]

The magnetism of triangulene

The magnetism of triangulene

MaterialsNanotechnologyQuantum physics

By DIPC

Graphene is a diamagnetic material, this is, unable of becoming magnetic. However, a triangular piece of graphene is predicted to be magnetic. This apparent contradiction is a consequence of “magic” shapes in the structure of graphene flakes, which force electrons to “spin” more easily in one direction. Triangulene is a triangular graphene flake, which possesses […]

Second-harmonic generation in a quantum emitter – metallic nanoparticle hybrid

Second-harmonic generation in a quantum emitter – metallic nanoparticle hybrid

Condensed matterMaterialsNanotechnologyQuantum physicsTheoretical physics

By DIPC

When two photons with the same energy interact with a nonlinear material, they “combine” and generate a new photon with twice the energy of the initial photons. More precisely, two photons at the fundamental frequency are absorbed by a plasmonic structure to emit one photon at the second-harmonic frequency. This is called second-harmonic generation. Second-harmonic […]

How chirality information can transfer over long distances

How chirality information can transfer over long distances

ChemistryCondensed matterMaterialsNanotechnologyQuantum physics

By DIPC

Usually, optical activity is understood as the ability some substances have to change the handedness of polarized light when it goes through them. Molecules that show optical activity have no plane of symmetry. The commonest case of this is in organic compounds in which a carbon atom is linked to four different groups. An atom […]

Metal atoms enhance quantum dot coupling in metal-organic nanoporous networks

Metal atoms enhance quantum dot coupling in metal-organic nanoporous networks

ChemistryCondensed matterMaterialsQuantum physics

By DIPC

A quantum dot (QD) is a nanometric crystalline structure of semiconductor materials. In a QD electrons are confined in a region of space, thus creating a well defined structure of energy levels that depends very much on the size and shape of the quantum dot. This structure resembles that of atoms, that is why sometimes […]

Quantum atomic fluctuations stabilize the crystal responsible for superconductivity at 250 K

Quantum atomic fluctuations stabilize the crystal responsible for superconductivity at 250 K

Condensed matterMaterialsQuantum physics

By DIPC

Achieving room temperature superconductivity is among the most pursued but elusive goals of scientists. I n December 2014 researchers claimed to have observed superconductivity as high as 200 K in hydrogen sulfide at high pressure, breaking all the records thus far. This meant that cuprates could be knocked from their position as the highest temperature […]