Author archives: DIPC

DSPS: a python package for stellar population synthesis

DSPS: a python package for stellar population synthesis

DIPC AstrophysicsDIPC Computational Cosmology

By DIPC

Stellar population synthesis (SPS) is the prevailing framework for predicting the spectral energy distribution of a galaxy (SED) from its fundamental physical properties. SPS is a mature subfield with a long history dating back to the seventies of the last century. Applications of SPS range from inferring the physical properties of individual galaxies, to forward […]

Optimal colorimetric sensing based on gold nanoparticle aggregation

Optimal colorimetric sensing based on gold nanoparticle aggregation

Materials

By DIPC

Spurred by outstanding optical properties, chemical stability, and facile bioconjugation, plasmonic metals have become the first-choice materials for optical signal transducers in biosensing. While the design rules for surface-based plasmonic sensors are well-established and commercialized, there is limited knowledge of the design of sensors based on nanoparticle aggregation. The working principle of biosensors built around […]

Emergence of superconductivity in a metallic single-layer by minute electron doping

Emergence of superconductivity in a metallic single-layer by minute electron doping

DIPC Advanced materialsDIPC Interfaces

By DIPC

The isolation and manipulation of atomically-thin crystals have recently enabled the investigation of a wealth of exotic electronic phenomena. A remarkable example is the case of superconductivity in transition metal dichalcogenide monolayers, where the strong spin-orbit coupling, together with the lack of inversion symmetry, triggers the emergence of unconventional superconducting properties. In parallel to the […]

A new way to rationally design anti-Kasha emitters

A new way to rationally design anti-Kasha emitters

ChemistryDIPC Computational and Theoretical Chemistry

By DIPC

Light emission (fluorescence or phosphorescence) in organic molecules, in the vast majority of cases, proceeds from the lowest energy excited state irrespective of the excitation energy used. This is known as the Kasha’s rule, which states that most of the molecules are emissive from the lowest energy, same (ground state) spin multiplicity, S1 excited state […]

Engineering high Chern number materials

Engineering high Chern number materials

DIPC Advanced materialsMaterials

By DIPC

Some materials have special universal properties protected against perturbations. Such properties are theoretically described by topology, a branch of mathematics concerned with the properties of geometrical objects that are unchanged by continuous deformations. So-called topological insulators are electronic materials that have a bulk band gap like an ordinary insulator but have conducting states on their […]

Tunneling electrons excite a superconducting pair-breaking transition in the presence of magnetic impurities

Tunneling electrons excite a superconducting pair-breaking transition in the presence of magnetic impurities

Condensed matterDIPC Advanced materialsMaterialsQuantum physics

By DIPC

The development of superconducting devices was greatly stimulated after the acceptance of the basic theory of superconductivity proposed in 1957 by John Bardeen, Leon Cooper, and Robert Schrieffer – BCS theory. The basic idea is that the electron waves in the superconducting state no longer act independently, as in Bloch’s model. Instead, they are paired […]

Synthesis of thioether polymers on Au(111)

Synthesis of thioether polymers on Au(111)

CatalysisChemistryDIPC Electronic PropertiesDIPC InterfacesMaterials

By DIPC

Organic compounds of sulphur that contain the group -S- linked to two hydrocarbons are known as thioethers. This alternative name to sulphides comes from the fact that they are analogues of ethers in which the oxygen is replaced by a sulphur; thioethers are generally more reactive than ethers, though. The formation of thioether structures increases […]

Universal power-law Kibble-Zurek scaling in fast quenches

Universal power-law Kibble-Zurek scaling in fast quenches

DIPC Quantum SystemsPhysicsQuantum physics

By DIPC

Thomas Kibble’s research on phase transitions and topological defects is most significant. Actually, the Kibble-Zurek mechanism (KZM) is a paradigmatic theory to describe the dynamics across both classical continuous phase transitions and quantum phase transitions. The Kibble-Zurek mechanism describes the non-equilibrium dynamics and the formation of topological defects in a system which is driven through […]

Substrate dependency of the charge density wave orders of monolayer VSe<sub>2</sub>

Substrate dependency of the charge density wave orders of monolayer VSe2

Condensed matterDIPC Advanced materialsMaterials

By DIPC

Two-dimensional (2D) materials are an ideal platform to artificially engineer heterostructures with new functionalities due to the weak van der Waals bonding between layers. Monolayers hosting symmetry-broken phases, such as superconductivity, magnetism, ferroelectricity, charge density waves (CDWs), or multiferroicity, represent the most interesting building blocks to design novel phases of matter. One of the main […]