Category archives: CFM

A theory of spin hall magnetoresistance to study magnetism at interfaces

A theory of spin hall magnetoresistance to study magnetism at interfaces

Condensed matterMaterialsQuantum physicsTheoretical physics

By DIPC

The interactions between moving charges and magnetic fields can be quite complicated; more if we consider the quantum effects. One example is the collection of Hall effects. Imagine that we have a conductor or a semiconductor through which a current is flowing. Then we apply a strong transverse magnetic field. As a result, we can […]

The extreme nanophotonics of the plasmonic nanopatch

The extreme nanophotonics of the plasmonic nanopatch

Condensed matterMaterialsNanotechnologyQuantum physics

By DIPC

For centuries, metals were employed in optical applications only as mirrors and gratings. New vistas opened up in the late 1970s and early 1980s with the discovery of surface-enhanced Raman scattering (SERS) and the use of surface plasmon (collective electronic oscillations at the surface of metals) resonances for sensing. In a simplified picture and in […]

First direct visualization by photoemision of how the Luttinger theorem works for Kondo lattices

First direct visualization by photoemision of how the Luttinger theorem works for Kondo lattices

Condensed matterMaterialsPhysics

By DIPC

Elements with 4f or 5f electrons in unfilled electron bands and their componuds , which have ions carrying magnetic moments but do not magnetically order, or only do so at very low temperatures, are generally known as heavy-fermion or heavy electron systems because the scattering of the conduction electrons with the magnetic ions results in […]

Finite size analogue of a heavy Fermi liquid in an atomic scale Kondo lattice

Finite size analogue of a heavy Fermi liquid in an atomic scale Kondo lattice

Condensed matterMaterialsPhysicsQuantum physics

By DIPC

The scattering of conduction electrons in metals owing to impurities with magnetic moments is known as the Kondo effect, after Jun Kondo, who analysed the phenomenon in 1964. This scattering increases the electrical resistance and has the consequence that, in contrast to ordinary metals, the resistance reaches a minimum as the temperature is lowered and […]

Hexagonal boron nitride monolayer films can be successfully grown on a curved Ni(1 1 1) substrate

Hexagonal boron nitride monolayer films can be successfully grown on a curved Ni(1 1 1) substrate

ChemistryCondensed matterMaterialsPhysics

By DIPC

Since the discovery of graphene, a wide diversity of atomic-layer-thick, two-dimensional (2D) materials with varied properties have emerged. Of particular interest are those that exhibit semiconducting behavior, such as hexagonal boron nitride (hBN). hBN is isoelectronic to graphene and has also a honeycomb lattice formed by alternating nitrogen and boron atoms, but in contrast to […]

On-surface synthesis: a guide for explorers

On-surface synthesis: a guide for explorers

ChemistryCondensed matterMaterials

By DIPC

The way a particular reaction proceeds, described in terms of the steps involved, is called mechanism. The study of organic chemistry is, to a great extent, the study of reaction mechanisms and textbooks content both their description and their applications. But something has come to revolutionize the world of mechanisms: surface chemistry. On-surface synthesis is […]

Why SnSe is so thermoelectrically efficient

Why SnSe is so thermoelectrically efficient

Condensed matterMaterialsPhysicsQuantum physics

By DIPC

With the possible exception of Avogadro’s number, which was in reality defined and made popular by Stanislao Cannizzaro, many things in the sciences are usually named after the person who makes them popular. The Seebeck effect is an example. Originally discovered in 1794 by Alessandro Volta, it is named after Thomas Johann Seebeck, who in […]