Category archives: DIPC Photochemistry

Labeling anticancer gold complexes to study their organ accumulation in vivo

Labeling anticancer gold complexes to study their organ accumulation in vivo

ChemistryDIPC PhotochemistryPharmacy

By DIPC

Auranofin is a gold (Au) salt classified by the World Health Organization as an antirheumatic agent. It was approved for the treatment of rheumatoid arthritis in 1985, but is no longer a first-line treatment due to its adverse effects on a long-term basis. But the drug is important in another way. The discovery that auranofin […]

Flavin bioorthogonal photocatalysis mechanism

Flavin bioorthogonal photocatalysis mechanism

ChemistryDIPC BiochemistryDIPC Photochemistry

By DIPC

A catalyst is a substance that increases the rate of a chemical reaction without itself undergoing any permanent chemical change. As the catalyst itself takes part in the reaction it may undergo a physical change. Metal complexes are typically regarded as catalysts that convert organic substrates into more valuable compounds; however, to date, catalytic transformations […]

Bioorthogonal catalytic activation of anticancer metal complexes

Bioorthogonal catalytic activation of anticancer metal complexes

BiomedicineChemistryCondensed matterDIPC Photochemistry

By DIPC

Metal complexes are typically regarded as catalysts that convert organic substrates into more valuable compounds; however, to date, catalytic transformations of metal complexes are practically unknown and represent a complete new way of thinking in catalysis. Their development can expand the scope of bioorthogonal chemical reactions to inorganic substances and metal-based prodrugs, fostering the creation […]

Riboflavin as a bioorthogonal photocatalyst

Riboflavin as a bioorthogonal photocatalyst

ChemistryCondensed matterDIPC BiochemistryDIPC PhotochemistryPharmacy

By DIPC

The combination of catalysis and bioorthogonality promises have an impact on drug discovery and bioimaging. Bioorthogonality, a term coined by Carolyn R. Bertozzi in 2003, refers to any chemical reaction that can occur inside of living systems without interfering with native biochemical processes. Hence, catalytic turnover can boost the efficiency of bioorthogonal chemical reactions, unveiling […]