Category archives: Materials

Breakdown of the free electron gas concept for electronic stopping

Breakdown of the free electron gas concept for electronic stopping

Condensed matterMaterialsQuantum physics

By DIPC

There is a variable that is relevant for such seemingly different fields as outer space exploration , nanotechnology , fusion research , or medicine. And that is electronic stopping, its precise knowledge important for the understanding of space weathering, ion beam patterning, plasma-wall interactions, or radiation therapy, respectively. When ions propagate in matter, they are […]

Validating the existence of a new phase of matter, the exciton condensate

Validating the existence of a new phase of matter, the exciton condensate

Condensed matterMaterialsQuantum physics

By DIPC

According to how the electronic band theory is usually explained, solids can be classified as insulators, semiconductors, or metals. But, actually, there is another kind of solid between semiconductors and metals, the semimetals. In insulators and semiconductors the filled valence band is separated from an empty conduction band by a band gap, in metals there […]

A new benchmark for any future models of solid-state photoemission

A new benchmark for any future models of solid-state photoemission

Condensed matterMaterialsPhysicsQuantum physics

By DIPC

In 1882, Heinrich Hertz devoted himself to the study of electromagnetism, including the recent and still generally unappreciated work of Maxwell. Two years later he began his famous series of experiments with electromagnetic waves. During the course of this work, Hertz discovered the photoelectric effect, which has had a profound influence on modern physics. The […]

Strong donor-acceptor coupling does not require covalent bonding

Strong donor-acceptor coupling does not require covalent bonding

ChemistryCondensed matterMaterialsQuantum physics

By DIPC

Interfacial electron transfer constitutes the key step in the conversion of solar energy into electricity and fuels. Required for fast and efficient charge separation, strong donor−acceptor interaction is typically achieved through covalent chemical bonding…or not. Experiences with donor−acceptor molecular diads and triads, conjugated polymers, and DNA, leads to the expectation that a covalent bonding is […]

Topological Quantum Chemistry, the band theory of solids is now complete

Topological Quantum Chemistry, the band theory of solids is now complete

Condensed matterMaterialsQuantum physics

By DIPC

Extended and refined by Bloch and others during the 1930s, Bloch’s theory, known as the band theory of solids, accounts very well for the conducting behaviour of materials. When atoms are joined together into a crystal, each of the individual quantum states of the atoms joins with the corresponding states in other (identical) atoms in […]

Materials for raising the temperature of the quantized anomalous Hall and magnetoelectric effects

Materials for raising the temperature of the quantized anomalous Hall and magnetoelectric effects

Condensed matterMaterialsPhysicsQuantum physics

By DIPC

Topological insulators are electronic materials that have a bulk band gap like an ordinary insulator but have conducting states on their edge or surface. The conducting surface is not what makes topological insulators unique, but the fact that it is protected due to the combination of spin-orbit interactions and time-reversal symmetry. Researchers are chasing efficient […]

Enantioselective polymerization of a biodegradable polymer using a substituted aminoacid as a catalyst

Enantioselective polymerization of a biodegradable polymer using a substituted aminoacid as a catalyst

ChemistryCondensed matterMaterials

By DIPC

The idea that certain natural products such as rubber are composed of giant molecules, or polymers, consisting of many repeating units linked by covalent bonds arose largely from the work of the German chemist Hermann Staudinger (1881–1965) in the early 1920s. He convinced skeptical chemists of this idea partly by linking small organic molecules (monomers) […]

A link between straintronics and valleytronics in graphene

A link between straintronics and valleytronics in graphene

Condensed matterMaterialsNanotechnologyQuantum physicsTheoretical physics

By DIPC

So-called “valleytronics” is a new type of electronics that could lead to faster and more efficient computer logic systems and data storage chips in next-generation devices. Valley electrons are so named because they carry a valley “degree of freedom.” This is a new way to harness electrons for information processing that’s in addition to utilizing […]

Tuning graphene adsorption continuously

Tuning graphene adsorption continuously

Condensed matterMaterialsNanotechnologyPhysics

By DIPC

Since the discovery that graphene, the two dimensional carbon allotrope, can be isolated and incorporated into electronic devices intense research efforts have been triggered. Driving forces behind the experimental and theoretical studies of graphene are, e.g., the exceptional electronic properties, in particular the high electron mobilities, the long spin coherence lengths and the possibility to […]

Magneto-optical activity of a nonmagnetic organic compound

Magneto-optical activity of a nonmagnetic organic compound

Condensed matterMaterialsNanotechnologyPhysics

By DIPC

We know that incident light can provoke a strong optical response in metallic nanostructures due to the excitation of resonant plasmonic modes, i.e, the electrons in the metal become excited by the photons in the incident light and oscillate collectively. Plasmonic nanoparticles can significantly modify the optical properties of nearby organic molecules and thus present […]