Category archives: DIPC

Development of a barium detector for a neutrinoless double beta decay

Development of a barium detector for a neutrinoless double beta decay

ChemistryDIPC BiochemistryDIPC InterfacesDIPC Particle PhysicsParticle physics

By DIPC

The observation of the neutrinoless double beta decay is the only practical way to establish that neutrinos are their own antiparticles. But, because of the small masses of neutrinos, the lifetime of neutrinoless double beta decay is expected to be at least ten orders of magnitude greater than the typical lifetimes of natural radioactive chains […]

Molecular bridges as tools to engineer quantum transport in nanoporous graphene

Molecular bridges as tools to engineer quantum transport in nanoporous graphene

DIPC Electronic PropertiesDIPC Quantum Systems

By DIPC

At the nanoscale, even the most basic quantum size effect, the induction of semiconducting gaps by electron confinement, requires ultimate precision. The case of graphene is a dramatic example, where deviations of a single atom in width can induce dramatic variations of the gap. As a consequence, local defects or variations in width can severely […]

The origin of the <i>lensing is low</i> problem

The origin of the lensing is low problem

AstrophysicsCosmologyDIPC Computational Cosmology

By DIPC

Recent studies have revealed that the bending of light around massive galaxies is significantly smaller relative to theoretical expectations. This finding, the so-called lensing is low problem, has been interpreted as a breakdown of our cosmological model. Now, a team of scientists has found that the mismatch between theory and observations is actually caused by […]

Correlated electron-phonon physics in nanotube quantum simulators

Correlated electron-phonon physics in nanotube quantum simulators

DIPC Quantum SystemsQuantum physics

By DIPC

In the search for novel materials, the simulation of quantum matter is an extremely demanding computational task, which is expected to profit substantially from the surge of quantum technologies. Quantum algorithms for programmable quantum computers offer the most flexible approaches, but tailor-made quantum simulators are particularly well suited for large-scale simulations. For instance, tremendous efforts […]

Synergistic effects of electrostatic bonds in a self-assembled molecule

Synergistic effects of electrostatic bonds in a self-assembled molecule

ChemistryDIPC Electronic PropertiesDIPC Interfaces

By DIPC

One feature of supramolecular chemistry is that of self-assembly, in which the structure forms spontaneously as a consequence of the nature of the molecules. Weak non-covalent bonds are fundamental for designing self-assembled organic structures with potentially high responsiveness to mechanical, light, and thermal stimuli. The contributions of multiple weak interactions control the ability of the […]

Controlling the magnetic anisotropy of a transition metal complex

Controlling the magnetic anisotropy of a transition metal complex

DIPC Electronic PropertiesNanotechnology

By DIPC

As candidates for high-density data storage and quantum computation, magnetic transition metal complexes have attracted extensive attention. It has been established that the atomic surroundings of the magnetic ions play a significant role and govern the magnetism of these magnetic complexes. One feature in particular, magnetic anisotropy, which describes the preferential orientation of the magnetic […]