Category archives: CFM

First real-space images of THz plasmon polaritons

First real-space images of THz plasmon polaritons

Condensed matterMaterialsQuantum physics

By César Tomé

Polaritons attract wide attention due to their ability to confine and guide light at the nanometre scale. These capacities are key for the development of ultrasmall resonators and waveguides that can be used for sensing, heat transfer and optical circuitry applications. But, what are polaritons in the first place? If, for the sake of the […]

Engineering quantum states and electronic landscapes

Engineering quantum states and electronic landscapes

Condensed matterDIPC InterfacesMaterialsQuantum physics

By DIPC

Surfaces are at the frontier of every solid. They provide versatile supports for functional nanostructures and mediate essential physicochemical processes. Intimately related to two-dimensional materials, interfaces and atomically thin films often feature distinct electronic states with respect to the bulk, which is key to many relevant properties, such as catalytic activity, interfacial charge-transfer, and crystal […]

A formidable characterization tool for one-dimensional metal−organic chains

A formidable characterization tool for one-dimensional metal−organic chains

DIPC Electronic Properties

By DIPC

One-dimensional metal−organic chains often possess a complex magnetic structure, susceptible to modification by alteration of their chemical composition. The possibility to tune their magnetic properties provides an interesting playground to explore quasi-particle interactions in low-dimensional systems. These systems have potential applications in the fabrication of nanodevices for spin sensing, spintronics, quantum computing based on the […]

Strong chiral transport switched by small magnetic field changes

Strong chiral transport switched by small magnetic field changes

DIPC Advanced materials

By DIPC

Usually, optical activity is understood as the ability some substances have to change the handedness of polarized light when it goes through them. Molecules that show optical activity have no plane of symmetry. So-called chiral matter broadly describes structures for which left- or right-handed mirror images are non-superimposable, or, equivalently, that lack improper rotation axes […]

Producing a large quantity of pure cyclic polymers

Producing a large quantity of pure cyclic polymers

ChemistryDIPC Polymers

By DIPC

Cyclic polymers present a topology that differ significantly from their linear counterparts due to their circular structure and, therefore, the lack of chain ends. These simple characteristics are responsible for important unique properties (e.g. lower intrinsic and melt viscosity, lower hydrodynamic volumes, slower degradation profiles, increased blood circulation times and more selective bioaccumulation) thanks to […]

The dominant role of many-body correlations in TMDs superconductivity

The dominant role of many-body correlations in TMDs superconductivity

DIPC Advanced materialsDIPC Interfaces

By DIPC

Several classes of correlated electron systems such as cuprates, iron-pnictides, iron-chalcogenides, and several heavy-fermion compounds, have been identified as unconventional superconductors. More recently, superconductivity with unconventional features has also been identified in twisted bilayer graphene. In this vein, the electronic correlations intrinsically present in transition metal dichalcogenides (TMDs), a family of layered materials, are promising […]

Chirality and the next revolution in quantum devices

Chirality and the next revolution in quantum devices

CFMDIPCDIPC Photonics

By DIPC

Usually, optical activity is understood as the ability some substances have to change the handedness of polarized light when it goes through them. Molecules that show optical activity have no plane of symmetry. So-called chiral matter broadly describes structures for which left- or right-handed mirror images are non-superimposable, or, equivalently, that lack improper rotation axes […]

The orderly growth of 5-armchair graphene nanoribbons

The orderly growth of 5-armchair graphene nanoribbons

ChemistryDIPC Interfaces

By DIPC

The advent of on-surface chemistry under vacuum has vastly increased our capabilities to synthesize carbon nanomaterials with atomic precision. Among the types of target structures that have been synthesized by these means, one-dimensional graphene nanoribbons (GNRs) have probably attracted the most attention, and for a good reason: t he enormous tunability of GNRs’ electronic properties […]