Category archives: DIPC Photonics

The unexpectedly rich excited-state dynamics of quantum dots in plasmonic cavities

The unexpectedly rich excited-state dynamics of quantum dots in plasmonic cavities

CFMDIPCDIPC Photonics

By DIPC

Plasmonic cavities formed by metallic surfaces are nanostructures that confine light to dimensions far smaller than the free-space wavelength, as they mix optical fields with electronic excitations. I t was not until the 1990s, with the appearance of accurate and reliable nanofabrication techniques, that plasmonics blossomed. It was found then that local fields around nanostructures […]

Kerker anapoles

Kerker anapoles

DIPCDIPC Photonics

By DIPC

A nanoantenna with balanced electric and magnetic dipole moments exhibits a directive radiation pattern with zero backscattering. This is known as the first Kerker condition after Kerker, Wang, and Giles, who predicted in 1983 that, under plane wave illumination, magnetic spheres with equal relative permittivity and permeability radiate no light in the backscattering direction. They […]

Strong coupling between propagating phonon polaritons and organic molecules observed for the first time

Strong coupling between propagating phonon polaritons and organic molecules observed for the first time

Condensed matterMaterials

By DIPC

The so-called van der Waals materials consist of two-dimensional layers bound by weak van der Waals forces. After the isolation of graphene, the field of two-dimensional van der Waals materials has experienced an explosive growth and new families of two-dimensional systems and block-layered bulk materials have been created. This growth has been fuelled mainly by […]

An intriguing link between Kerker conditions and energy conservation from fundamental principles

An intriguing link between Kerker conditions and energy conservation from fundamental principles

Condensed matterMaterials

By DIPC

A nanoantenna with balanced electric and magnetic dipole moments exhibits a directive radiation pattern with zero backscattering. This is known as the first Kerker condition after Kerker, Wang, and Giles, who predicted in 1983 that, under plane wave illumination, magnetic spheres with equal relative permittivity and permeability radiate no light in the backscattering direction. They […]