Category archives: DIPC

How chirality information can transfer over long distances

How chirality information can transfer over long distances

ChemistryCondensed matterMaterialsNanotechnologyQuantum physics

By DIPC

Usually, optical activity is understood as the ability some substances have to change the handedness of polarized light when it goes through them. Molecules that show optical activity have no plane of symmetry. The commonest case of this is in organic compounds in which a carbon atom is linked to four different groups. An atom […]

Metal atoms enhance quantum dot coupling in metal-organic nanoporous networks

Metal atoms enhance quantum dot coupling in metal-organic nanoporous networks

ChemistryCondensed matterMaterialsQuantum physics

By DIPC

A quantum dot (QD) is a nanometric crystalline structure of semiconductor materials. In a QD electrons are confined in a region of space, thus creating a well defined structure of energy levels that depends very much on the size and shape of the quantum dot. This structure resembles that of atoms, that is why sometimes […]

Flavin bioorthogonal photocatalysis mechanism

Flavin bioorthogonal photocatalysis mechanism

ChemistryDIPC BiochemistryDIPC Photochemistry

By DIPC

A catalyst is a substance that increases the rate of a chemical reaction without itself undergoing any permanent chemical change. As the catalyst itself takes part in the reaction it may undergo a physical change. Metal complexes are typically regarded as catalysts that convert organic substrates into more valuable compounds; however, to date, catalytic transformations […]

Exploring new physics at the European Spallation Source using neutrinos

Exploring new physics at the European Spallation Source using neutrinos

DIPC Particle PhysicsParticle physics

By DIPC

Spallation is a type of nuclear reaction in which the interacting nuclei disintegrate into a large number of protons, neutrons and other light particles, rather than exchanging nucleons between them. It is thought that most of the nuclei of light elements, such as boron, are made in this way. Spallation reactions of this type are […]

Tracking the tautomerization of a single molecule in space and time

Tracking the tautomerization of a single molecule in space and time

ChemistryCondensed matterNanotechnology

By DIPC

There are chemical compounds, called isomers, that have the same molecular formulae but different molecular structures or different arrangements of atoms in space. In constitutional isomerism the molecules have different molecular structures: i.e., they may be different types of compound, or they may simply differ in the position of the functional group in the molecule […]

An additional contribution to the spin Hall effect induced by an electric current

An additional contribution to the spin Hall effect induced by an electric current

Condensed matterMaterialsPhysicsTheoretical physics

By DIPC

The interactions between moving charges and magnetic fields can be quite complicated; more if we consider the quantum effects. One example is the collection of Hall effects. Imagine that we have a conductor or a semiconductor through which a current is flowing. Then we apply a strong transverse magnetic field. As a result, we can […]

Huisgenases, new protein catalysts which are not enzymes

Huisgenases, new protein catalysts which are not enzymes

ChemistryDIPC BiochemistryMaterials

By DIPC

Proteins can perform a huge number of biological functions with amazing efficiency. In order to achieve these different functions, proteins rely on the precise 3D arrangement of functional groups which are referred to as the protein fold. Some of these functions include acting as a catalyst in biochemical reactions; in these cases proteins are called […]

Quantum atomic fluctuations stabilize the crystal responsible for superconductivity at 250 K

Quantum atomic fluctuations stabilize the crystal responsible for superconductivity at 250 K

Condensed matterMaterialsQuantum physics

By DIPC

Achieving room temperature superconductivity is among the most pursued but elusive goals of scientists. I n December 2014 researchers claimed to have observed superconductivity as high as 200 K in hydrogen sulfide at high pressure, breaking all the records thus far. This meant that cuprates could be knocked from their position as the highest temperature […]

A local quantum emitter can be used to sense the environment of a molecule with the minimal quantum of energy

A local quantum emitter can be used to sense the environment of a molecule with the minimal quantum of energy

Condensed matterMaterialsNanotechnologyQuantum physicsTheoretical physics

By DIPC

Plasmonic nanostructures confine light to dimensions far smaller than the free-space wavelength, as they mix optical fields with electronic excitations. It was not until the 1990s, with the appearance of accurate and reliable nanofabrication techniques, that plasmonics blossomed. It was found then that local fields around nanostructures could be directly measured by near-field scanning optical […]